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The direct C-H functionalization of simple hydrocarbons has
emerged as a research topic of great interest in recent years due to
the potential opportunity of developing novel methodologies in
synthesis and chemical processes.1 N-Hydroxyphthalimide (NHPI)
has been used as a catalyst for the oxidation of certain types of
hydrocarbons either in the absence or in the presence of metal
cocatalysts to give alcohols, ketones, or carboxylic acids.2 It was
revealed that the phthalimide N-oxyl (PINO) radical, generated in
situ from the NHPI precursor, is an active catalytic species
responsible for the reaction.3 We envisaged that PINO can be also
utilized as a stoichiometric reactant for the oxygenation of
hydrocarbons, and the result of which is described herein.4

Using ethylbenzene as a test substrate with a stoichiometric
amount of NHPI, the reaction efficiency was investigated upon the
variation of metal species and oxidants (Table 1).5 While the
oxygenated PINO adduct (1) was obtained in only 29% yield at 70
°C with PhI(OAc)2 alone (entry 1),6 it was found that certain metal
additives can significantly improve the reaction efficiency. For
instance, CuCl or its variant bearing a N-heterocyclic carbene
(NHC) ligand showed especially high reactivity (entries 2 and 3).
The Cu-facilitated reaction proceeded even at room temperature,
albeit with diminished efficiency (entry 4). However, other metals
such as Co, Mn, or V species, known to be effective cocatalysts
for the oxidation of hydrocarbons using NHPI,7 or Cu(II) displayed
little improvement (entries 5 and 6). When PhI(OAc)2 was absent,
the reaction was very sluggish (entry 8). In addition, no reaction
takes place in the absence of NHPI.

The present Cu-facilitated oxygenation of benzylic C-H bond
was envisioned to proceed via a radical pathway based on a range
of experimental data. When TEMPO (2,2,6,6-tetramethyl-1-pip-
eridinyloxy), a well-known radical-capturing species, was added
to the reaction mixture, a TEMPO-trapped compound 2 was isolated
(21%) in addition to 1 (23%), thus suggesting that the reaction

indeed involves a radical intermediate derived from ethylbenzene
(eq 1).8 In addition, when the reaction mixture was subjected to
the electron spin resonance (ESR) measurements, a triplet signal
was obtained with g ) 2.023.9

The relative rate constants of the intermolecular competition
reaction were determined to be quite high (krel ) 10.8, eq 2),5

suggesting a possible involvement of the quantum tunneling effect.10

The measured deuterium kinetic isotope effects (KIE) suggest that
the hydrogen abstraction from ethylbenzene may be the rate-
determining step during the oxygenation process.

The above observations led us to propose a plausible mechanistic
pathway for the present oxygenation (Scheme 1). It is postulated
that CuCl acts as a catalytic activator of PhI(OAc)2,11 leading to
acetoxychlorocopper species, which in turn converts NHPI into the
PINO radical (steps i and ii).12 It is believed that an alkyl radical
is generated upon the H abstraction from available hydrocarbons
by PINO, being most likely the rate-determining step (step iii).
Finally, the recombination of the alkyl and nitroxyl radical will
lead to the PINO adducts (step iv).

It should be mentioned that the PINO adduct is not produced
by substitution of 1-phenylethyl acetate as an intermediate. In fact,
when separately prepared 1-phenylethyl acetate was subjected to
the reaction conditions, it remained intact (Scheme 1, step v). This
result, combined with the fact that formation of 1-phenylethyl
acetate is negligible (<1%) during the course of the oxygenation
reaction, provides the basis for the exclusion of the stepwise
substitution route as an alternative pathway.13

To explore the substrate scope, we examined a wide range of
hydrocarbons (Table 2). It was observed that the electronic property

Table 1. Selected List of Screening for the Optimized Conditionsa

entry catalyst solvent yield (%)b

1 none CH3CN 29
2 CuCl CH3CN 78
3 (NHC)CuCl CH3CN 77
4c CuCl CH3CN 51
5 Co(acac)3 CH3CN 30
6 CuCl2 CH3CN 46
7 CuCl CHCl3 43
8d CuCl CH3CN 10

a Ethylbenzene (5.0 equiv), NHPI (1.0 equiv), PhI(OAc)2 (1.0 equiv),
and catalyst (10 mol %) in solvent (0.3 M) at 70 °C for 12 h under Ar.
b Determined by 1H NMR. c Performed at 25 °C. d Without PhI(OAc)2.

Scheme 1
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of substituents on ethylbenzene derivatives displayed little effects
on the reaction efficiency (entries 1-5). Reactivity of 2-ethylpy-
ridine was also similar to that of ethylbenzene (entry 6). Interest-
ingly, a substrate bearing a radical-sensitive moiety was also
efficiently oxygenated without rearrangement (entry 7), implying
that recombination of two resultant radical species, PINO and
cyclopropylcarbinyl in this case, is much faster than the ring-
opening process of the later radical.14

Reactions of bi- or tricyclic hydrocarbons also showed an excellent
selectivity at the benzylic position (entries 9-11). Interestingly, among
two available benzylic sites in dibenzosuberane and isochroman, the
1-position was exclusively oxygenated (entries 12 and 13), and its
structure of the former product was determined by an X-ray crystal-
lographic analysis.5 Toluene was smoothly reacted with NHPI to afford
the benzyl-PINO adduct (entry 14), whereas reaction of p-xylene gave
lower yield (entry 15).15 The observation that both 1-methylnaphthalene
and 8-methylquinoline displayed similar efficiency implies that the
plausible chelation effect is not appreciable in the present system
(entries 16 and 17).16 Tetrahydrofuran was selectively converted to
its R-PINO adduct in good yield (entry 18).

It was intriguing to observe that alkenes reacted with NHPI to
allow for the introduction of the PINO group at the allylic position
with the concurrent isomerization of double bond. For instance,
when vinylcyclohexane was employed as a substrate, cyclohexyl-

idenemethyl-PINO was selectively obtained in good yield (entry
19). Similarly, allylbenzene was oxygenated to afford the isomerized
cinnamyl-PINO adduct (entry 21).

The obtained PINO adducts could be readily converted to the
corresponding alcohols or hydroxylamine species (Scheme 2),17

thus demonstrating the synthetic utility of the oxygenated products.

In summary, we have developed a convenient protocol for the
C-H functionalization of hydrocarbons. A broad range of substrates
are selectively oxygenated at the benzyl or allylic position using
stoichiometric amounts of N-hydroxyphthalimide and PhI(OAc)2

in the presence of CuCl catalyst, thus offering a new possibility of
the selective C-O bond-forming methodology.
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Table 2. Selective Oxygenation of Various Hydrocarbonsa

a Substrate (10 equiv), NHPI (1.0 equiv), PhI(OAc)2 (1.0 equiv), and
CuCl (10 mol %) in CH3CN (0.3 M) at 70 °C for 12 h under Ar.
b Isolated yield. c Five equivalents of substrate was employed.
d (NHC)CuCl (10 mol %) was used. e Twenty equivalents of substrate
was used. f In neat conditions.

Scheme 2
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